Automated visual inspection
Defect detection
“Production lines are not designed to produce defects.”
Apart from this method, other techniques are used in visual inspection (VI) to identify, localize and classify defects, where a substantial number of images representing such defects and features are required for training purposes. Moresoever, precise and consistent labels are key to ensuring a high performing deep learning model.
To create a balanced data set for training and validation, one needs both good images (OK) and bad images (NOK). Since ideally no components with defects are produced in manufacturing, one often finds a shortage of defect images (NOK) available for training and validation (within a reasonable time period).
Synthetic image data is the ideal solution to compensate for this bias by representing rarely occurring defects in the dataset. Synthetic data we offer is already annotated with pixel precision. Any type of defect can be represented uniquely in order to be able to train a robust model.

Why use synthetic image data for
automated visual / optical inspection?
Haven’t found your use case?
If you are facing challenges with data acquisition and are considering the use of synthetic images for an application not listed here, contact us – we would be glad to work together towards a solution.